DocPDF Sharing Community - File Manager - PDF Files

image

Renewable Energies 신재생 에너지 DL SOLARA

renewable energies 신재생 에너지 dl solara 태양광 에너지 실습장비 photovoltaic solar energy trainer side a side b 태양광
29 Dec, 2022
Date
983.44 KB
Size
2459
Views
1469
Downloads
A
Pic
Pic
Pic
S
Pic
P
Pic
+42

Start relevant disscusion about this document:

Preview PDF

Showing preview pdf file

Drop related files here or click to upload.

Upload up to 10 files

Related Files

Showing 7 files
Icon
POSTGRADUATE PROGRAMME RENEWABLE ENERGY (PPRE) BIOGAS WORKSHOP
postgraduate programme renewable energy (ppre) biogas workshop 26th to 28th april 2011 oldenburg university venue: carlv.ossiet
Icon
NATIONAL RENEWABLE ENERGY LABORATORY INJURY AND ILLNESS REPORT
national renewable energy laboratory injury and illness report (for an occupational injury or illness)
Icon
ASH WATER TITRATION RENEWABLE RESOURCES FOR THE PREPARATION
ash water titration: renewable resources for the preparation of biodiesel
Icon
G EF CONCEPT NOTE RENEWABLE ENERGY ENTERPRISE DEVELOPMENT GLOBAL
g ef concept note renewable energy enterprise development global environment facility concept document for gef pipeline entry countries
Icon
A NATIONAL RENEWABLE ENERGY SOURCES POLICY FOR MALTA JOE
a national renewable energy sources policy for malta joe mizzi m.p. it is very often, that in the course of our life, we aspire
Icon
AMAZON RENEWABLE ENERGY PROGRAMME LEAD POSITION TO BE BASED
amazon renewable energy programme lead position to be based in: lima (peru), la paz or santa cruz (bolivia), bogota or cali (colom
Icon
RENEWABLE ENERGY MIX FOR EGYPT HANI EL NOKRASHY DRING
renewable energy mix for egypt hani el nokrashy, dr.ing. nokraschy engineering gmbh an de masch 24 d25488 holm (hamburg) ger
Sharing community where you can transfers and download files. At present more than 1.000.000 documents are submitted to our system. Do you need us to host your document? You can upload documents for a free. Invite DocPDF Collaboratorsto create great outstanding read to read community.
- Followers
- @DocPDF
- #DocPDF
SPREAD KNOWLEDGE - SHARE IT! Copy and paste the link wherever you want and start sharing!
Link:

Transcript

Renewable Energies 신재생 에너지

DL SOLARA
태양광 에너지 실습장비
PHOTOVOLTAIC SOLAR ENERGY TRAINER
Side A
Side B
태양광 에너지 설비의 이론 및 실습을 위한 교육 시스템
태양 복사 가능한 태양광 패널 이동식 구조
한쪽면은 태양 방사선 측정용 보정 셀과 0° 에서 90° 범위의 기울기 조절 태양광 패널이며, 다른 한쪽면은 태양광 설비
모든 구성 요소 및 직류 12V, 교류 230V 제공 패널로 구성
실습 내용:
*
실습장비 구성품 이해 및 동작 실험.
*
태양 방사 측정
*
태양광 패널의 전압 및 전력 파라미터 측정.
*
부하 조정기 프로그래밍.
*
태양광 실습장비 설치 분석.
*
직류 공급.
*
교류 공급.
구성품 리스트:
*
50 W, 12 V 태양광 패널.
*
태양광 방사 측정 셀.
*
대형 LCD 스크린 프로그래머블 전자 부하 조절기.
*
150 Wp 반 정현 인버터.
*
17 A/h 배터리.
*
램프( 12 V / 230 V, 50 W)
*
태양광 방사 측정용 계기 W/m2.
*
충전 측정용 계기.
*
2개의 보호 자기열 스위치(protective magnetothermal switches).
*
1 설명 및 실습 매뉴얼.
크기 : 400 x 610 mm.
높이 (45º 시): 900 mm.
DL SOLARB
모듈형 태양광 에너지 실습장비
SOLAR ENERGY MODULAR TRAINER
태양광 에너지 전기 설비의 이론 및 실습을 위한 모듈형 실습장비.
구성:
*
태양광 경사형 모듈, 90W, 12V, 온도센서 및 태양 방사 측정.
*
모듈 지지 프레임.
*
배터리.
*
배터리 조절 모듈, 12V, 32A.
*
부하 모듈. 2 X 12V lamps, dichroic 35W, LED 3W.
*
부하 모듈 2 X mains voltage lamps, dichroic 35W, LED 3W.
*
전자 조정 모듈 ( LCD screen).
*
가감저항기.
*
측정 모듈: 태양 방사선 (W/m2), 태양 패널 온도 (°C),
± 15A (2 X dc ammeters), 300W.
*
DC/AC 컨버터 모듈(정현파 출력) 평균 전력: 300 W.
연결 케이블 및 실습 매뉴얼 제공.
Options:
*
DL SIMSUN: 램프 모듈.
*
DL DAQRE: 데이터 취득 모듈.
DL SOLARC
소형 태양광 에너지 실습장비
PHOTOVOLTAIC SOLAR ENERGY TRAINER
소형 태양광 에너지 이론 및 실습 키트.
구성:
*
시뮬레이션 패널( 그래픽 표시, 램프,스위치,모터 등).
*
6 태양광 모듈(2 mm). 직병렬 혼합 배열, 태양 방사 측정, 전압 전류 측정.
*
배터리 (에너지 충전).
*
디지털 멀티미터.
*
조명 브리지 2 X 50 W dichroic lamps, 전자식 조명 조절기.
ABS 재질의 케이스.
실습 교재 및 소프트웨어 제공
크기 : 486 x 289 x 70 mm.
케이스 크기 : 520 x 370 x 120 mm.
DL SOLARD1
태양광 에너지 모듈형 실습장비 전원 연결형
SOLAR PHOTOVOLTAIC ENERGY MODULAR
TRAINER WITH CONNECTION TO MAINS
태양광 패널에서 전기 에너지 발생 및 전원 네트워크로의 유입 학습을 위한 실습장비.
구성:
*
태양광 경사형 패널, 90W, 12V, 온도 센서 및 태양 방사 측정.
*
모듈 지지 프레임.
*
부하 모듈 (2X mains voltage lamps, dichroic 35W, LED 3W).
*
전원 가감 저항기, 6 A, 80 W.
*
차동 자기열 스위치 모듈 Differential magnetothermal switch module.
*
측정 계기 모듈: 솔라 방사선 (W/m2), 솔라 패널 온도 (°C), 솔라 패널 전류, 배터리 또는 부하 전류, 솔라
패널 전압, 유효 전력.
*
그리드 타입 인버터 , 12 V, 300 W.
*
전기 에너지 측정 모듈 kW/h.
*
네트워크 분배기.
연결 케이블 및 실습 매뉴얼.
Options:
*
DL SIMSUN: 조명 램프 모듈.
*
DL DAQRE: 데이터 취득 시스템.
DL SIMSUN
조명 램프
LAMPS FOR PHOTOVOLTAIC SOLAR TRAINERS
모델 DL SOLARB, DL SOLARD1, DL SUNWIND 트레이너와 같이 사용.
빛 강도 수동 및 자동 조절, 010 V 입력.
구성품:
*
4 off 할로겐 램프, 개당 300 W
*
조광기 Dimmer
*
자기열 스위치 Magnetothermal switch, differential 10 A
*
포텐시오미터, 10k
DL TM11
태양광 및 태양열 시뮬레이터
PHOTOVOLTAIC AND THERMAL PANELS SIMULATOR
*
태양광 실리콘 싱글 크리스털 셀, squared, side 135 mm;
*
두개의 태양광 셀, 직렬 연결;
*
두개의 태양광 셀, 병렬 연결;
*
panel composed of 36 태양광 셀 패널, 직렬 연결;
*
열 패널, 액체 순환 liquid circulation.
구성 요소 제어 및 조절, 전기전자 회로, 유체 회로의 분석을 위한 색 표현 및 패널에 기능 표시.
패널과 컴퓨터를 통한 모니터링 및 작동 조건을 입력하여 시스템 동작을 시뮬레이션.
컴퓨터를 통한 제어 시뮬레이션 및 아날로그 디지털 미터를 통한 계측, 문제 해결능력 학습.
태양광 시스템 실습:
*
태양 방사 강도의 여러가지 값 시뮬레이션 (W/m²);
*
태양 전지 온도의 여러가지 값 시뮬레이션;
*
태양광 시스템의 전기 부하 변경;
*
전압전류(VI) 특성 검출;
*
전압전력 특성 검출 (V–P);
*
변환 효율 평가 (방사 에너지전력)
태양 열 패널 실습:
*
태양 방사 강도의 여러가지 값 시뮬레이션 (W/m²);
*
열 전달 액체 온도의 여러 값 시뮬레이션;
*
열 전달 액체 용량의 변경;
*
열 전달 액체 온도의 평가;
*
변환 효율 평가 (방사 에너지전력).
DL THERMOA1
태양 열 에너지 실습장비
SOLAR THERMAL ENERGY TRAINER
위생설비, 에어 컨디셔닝 등 뜨거운 물을 얻기 위해 사용되는 태양광 발전 설비의 이론 및 실제 연구를 위한 교육용 실습장비.
다양한 범위의 교육용 어플리케이션의 순환 시스템.
에너지 계산용 6 온도 프로브, 4 서로 다른 포인트, 태양광 복사 센서.
교육 목적
태양광 전력 설비의 이론 및 실제 학습을 위한 글로벌 실습 시스템:
*
구성 요소 및 동작 관련 이해.
*
구성 요소의 기술적 파라미터 해석.
*
ACS 설비, 에어컨 등 크기 조정 표준.
*
설비 조립 및 유지 보수 표준.
*
제어에 의해 공급된 상황 데이터 해석.
구성
메인 모듈
크기 1000 x 650 x 1650 mm., 블록도로 표시된 시스템 전면 구성.
일 이차 회로의 액체 순환, 저장 및 제어 구성 요소 포함.
이들 구성요소들은 실습을 쉽게 조립 분해 가능하게 배치.
전면 제어 패널은 메인 모듈의 상단에 구성:
*
시스템 블럭도.
*
데이터 읽기 위한 LCD 스크린의 전자 제어 센터.
*
상황 조명.
냉수 주입을 위한 유압식 소켓, 위생 온수 방수구, 솔라 패널 연결 등을 모듈 뒷면에 배치.
솔라 패널
실내 실습 가능한 전원에 의해 공급되는 태양 전지 패널 시뮬레이터.
대류식 히터 CONVECTOR HEATER
발생된 온수를 적용하는 수단으로 대류식 히터 사용
유연한 파이프로 연결.
이 시스템에서 얻은 난방의 효과 실험.
위생 온수 공급, 바닥 난방 등의 다른 응용 교육 및 실습 가능.
실험 실습 교재.
DL THERMOA2
태양 열 에너지 실습장비
SOLAR THERMAL ENERGY TRAINER
위생설비, 에어 컨디셔닝 등 뜨거운 물을 얻기 위해 사용되는 태양광 발전 설비의 이론 및 실제 연구를 위한 교육용 실습장비.
다양한 범위의 교육용 어플리케이션의 순환 시스템.
에너지 계산용 6 온도 프로브, 4 서로 다른 포인트, 태양광 복사 센서.
교육 목적
태양광 전력 설비의 이론 및 실제 학습을 위한 글로벌 실습 시스템:
*
구성 요소 및 동작 관련 이해.
*
구성 요소의 기술적 파라미터 해석.
*
ACS 설비, 에어컨 등 크기 조정 표준.
*
설비 조립 및 유지 보수 표준.
*
제어에 의해 공급된 상황 데이터 해석.
DL WINDA
모듈형 풍력 실습장비
WIND ENERGY MODULAR TRAINER
풍력 발전 설비의 이론교육 및 실습장비.
이 시스템은 제어 모듈 셋, 측정장치, 어플리케이션, 윈드 터빈, 풍속 측정 장치 및 실습 매뉴얼을 포함한다.
모듈 구성
*
계측 모듈
*
DC/AC 변환 모듈
*
배터리 제어 모듈
*
12 V 램프 모듈
*
전원 램프 모듈
*
24 Ah, 12 V 배터리
풍력 발전기
*
160 W, 12 V 풍력 발전기.
윈드 센서
*
풍속계 및 바람 방향 센서
부속품:
*
프레임
*
연결 케이블
*
이론 및 실습 매뉴얼
*
윈드 터빈 소개 매뉴얼
DL WINDA1
모듈형 전동기 구동 풍력 실습장비
WIND ENERGY MODULAR TRAINER WITH MOTOR DRIVE FOR INDOOR USE
풍력 발전 설비의 이론교육 및 실습을 위한 장비
이 시스템은 제어 모듈 셋, 측정 및 응용 장치, DC 전동기, 풍속 측정 장치 및 사용설명서 실습교재로 구성 된다.
모듈 구성
*
계측 모듈
*
DC/AC 변환 모듈
*
배터리 제어 모듈
*
12 V 램프 모듈
*
전원 램프 모듈
*
24 Ah, 12 V 배터리
*
구동 전동기 키트
풍력 발전기
*
160 W, 12 V .
풍력 센서
*
풍속계 및 바람 방향 센서
부속품:
*
프레임
*
연결 케이블
*
설명서 및 실습 매뉴얼
*
윈드 터빈 소개 매뉴얼
DL WINDB
풍동 풍력 실습장비
WIND POWER TRAINER WITH WIND TUNNEL
풍력 발전의 수단으로 전기 발전의 이론 및 실습을 위한 교육 장비
풍력 터빈에 도달 공기의 흐름을 변경하고 무부하 및 부하 조건에서 동작 실험.
구성:
*
풍동:
*
전자 속도 조절 단상 산업용 팬.
*
A 12 V, 40 W 윈드 터빈, 바람의 소스에 방향 변경 매커니즘.
*
풍속계 ;
*
전압계 ;
*
전류계 ;
*
전원 공급기, 0÷230 V, 4 A, 아날로그 출력: 010 V.
*
가변 저항 부하.
크기: 1780 x 610 x 1360 mm.
동작 및 실습 매뉴얼.
옵션:
*
DL DAQRE: 자동 데이터 취득 시스템.
DL HYDROGENA
수소 연료 전지 실습장비
Trainer for experiences on hydrogen fuel cells
구성: PEM 연료 전지 스택 10 (ten cells), electrolyser, 전원공급기, 연료 전지 모니터 소프트웨어,
수소 저장 탱크, 전기 부하 (램프), 팬, 솔라 모듈, 2 램프 모듈.
부속품: 물병, 보호용 고글, 실리콘 튜빙, 교재.
사양
*
Electrolyser: 15 W
*
연료 전지
*
셀 전력: 200 mW
*
전력 (10 cells) 2 W
*
솔라 모듈: 4 V / 3,3 A
*
가스 저장: 80 cm3
*
램프: 4.4 W
*
전원 공급기: 6 Vdc / 3 A
*
모니터링 소프트웨어
*
크기: 1000 x 620 x 200 mm.
실습 내용
*
10 셀 연료 전지 스택 실험
*
수소 생산 및 저장
*
솔라 패널의 특성 곡선 결정
*
전압 조절 자동 측정
*
전해조의 특성 곡선 결정
*
패러데이 법칙 학습
*
연료 전지 특성 곡선 결정
*
연료 전지 효율 결정
*
물의 분해 전압 결정
*
PC를 통한 장시간 측정
*
연료전지 스택의 다른 동작점 출력 고정
*
단일 전지 스택 전압 모니터링
*
전력 조절 자동 측정
DL HYDROGENB
연료 전지 시스템 실습장비
FUEL CELLS SYSTEMS TRAINER
연료 전지 시스템의 공학적 원리와 교육 목적을 위한 시스템
복잡한 기술 개념 및 기본 원리를 모듈식으로 쉽게 설명
모듈 구성:
*
100 W PEM 연료 전지. 성능: 14 V at 7.2 A. H2 소비: 1.4 l/min.
전자 콘트롤러 포함.
*
225 l 알루미늄 저장 용기
*
DC/DC 컨버터, 출력 12 V, 8 A
*
할로겐 램프 부하, 12 V, 50 W, LED 램프, 12 V, 3 x 1 W
*
가변 대수 저항기, 1.5 Ohm ÷ 17 Ohm, 100 W, Imax 8 A
*
배터리
*
계측 모듈, 2 전압계, 40 V, 1 전류계, 10 A, 3 디스플레이(온도, 압력,흐름)
옵션:
*
DC/AC 컨버터, 정현파 출력
*
2 할로겐 램프 부하 모듈, 220 V, 50 W
Software ( LabVIEW ):
*
PC 이용 데이터 기록
*
사용이 편리한 데이터 처리 소프트웨어
수소화물 저장 용기 옵션: 수소 발생기.
DL BIO30
바이오 디젤 실습장비
PILOT PLANT FOR THE PRODUCTION OF BIODIESEL
Biodiesel can be used in automotive diesel engines (trucks, tractors,
vans, automobiles, etc.) or stationary engines (generators of
electricity, heat, etc.), in its natural form or mixed with petroleum
diesel, in different proportions.
The biodiesel does not require any modification in the standard
engines.
Our Biodiesel Plant allows producing fuel that can be used in the
above diesel applications.
Biodiesel is produced by the chemical reaction of a vegetable oil or
animal fat with methanol or ethanol (waterless sugar cane alcohol) in
the presence of a catalyst.
This process is known as transesterification, and the catalyst can be
alkaline, acid or enzymatic.
This process also produces glycerin, used for the production of soaps
and other products.
The Transesterification Process Plant for Biodiesel Production was
developed by experienced professionals, using conventional equipment
components available on the common market and automated with the
technical features used in industrial processes, allowing didactic
application and investigations.
With this plant it is possible to control the heating temperatures of
the vegetable oil, of the reaction and of the washing.
It is also possible to recirculate the mixture during the reaction
time.
According to the requirements of the end users, our Technical
Department is able to design BIODIESEL PLANTS with specific technical
features. For instance, the capacity of the plant can be different
from case to case.
The plant may or may not include the alcohol recovery system or the
ultrasound technology to improve the efficiency of the mixing phase.
Therefore, the plant that is described hereunder must be considered as
a sample pilot plant with specific features that can be further
discussed with the end user.
In this particular case, the plant has a capacity of 30 litres/batch,
includes the alcohol recovery system and does not include the
ultrasound device.
TECHNICAL FEATURES OF THE BIODIESEL PLANT DL BIO30
Capacity of the plant: 30 litres/batch
Main Components:
*
Vegetable oils treatment system:
*
Tank for the reception of the raw material.
Capacity: 30 litres, complete with sieve to filter solid bodies in the
upper side. In stainless steel
*
Electrical heating system
*
Thermometer
*
10 μm filter
*
Transesterification reaction system:
*
Conical tank in stainless steel AISI 316L. Capacity: 30 litres
*
Stirring system
*
Electrical heating system
*
Alcohol recovery system
*
Pump
*
Digital control panel
*
Catalyst dispenser
*
Tank in stainless steel AISI 304L for mixing the methyl.
Mixing capacity: 4 litres
*
Decantation tank in stainless steel.
Capacity: 30 litres with recovery of the alcohol and condenser with an
area of 0.5 m2
*
Washing system with filtering:
*
Washing tank. Capacity: 30 litres
*
Stirring system
*
Electrical heating system
*
10 μm and 1 μm filters
*
Installation kit in stainless steel for interconnecting the
equipment
*
Accessories
*
Digital scale
*
Thermometer
*
pH meter
*
Flat bottom 500 ml flask
*
1000 ml beaker
*
Burette with support
*
Funnel
*
Graduated pipette
*
Volumetric pipette
*
Test tube
*
Sampling tubes with support
*
Bunsen beak
*
Tripod
*
Asbestos sheet
*
Metal structure in carbon steel and high resistance epoxy paint.
Dimensions: 2 x 0.9 x 1.8 metres
DL ETAL15
바이오 에탄올 실습장비
BIOETHANOL PILOT PLANT
The pilot plant for the production of bioethanol from De Lorenzo
reflects the experience that our company has accumulated in the field
of renewable energies. The plant allows producing approximately 150
liters of juice starting from 250 kg of sugar cane and then 10 to 15
liters of alcohol 94/96%. The production is in four steps according to
the following block diagram and specifications.
On request, it is possible to produce alcohol with tubers (sweet
sorghum, manioc, potato, rice and corn) with additional grinders

The plant has the following functions:
Grinder for the sugar cane with grinding capacity of 250 kg/h,
threephase 3 HP electric motor and variable grinding pressure.
Dilution tank in polypropylene, capacity 200 liters, for the
preparation (Brix and temperature) of the juice to be fermented.
Cleaning tank, in polypropylene, thickness 3 mm., 5 steps, two
outlets, one for removing the juice, the other for draining and
cleaning, with a 1 and 1/2" PVC ball valve. Capacity 60 liters, with a
pump and piping for transferring the juice.
Fermentation tanks, in polypropylene, with timing relay, total
capacity 300 liters.
Decanter, for the separation of the yeasts, capacity 200 liters.
Set of two pumps and transfer piping from the dilution tank to the
fermentation tanks and from the fermentation tank to the decanter.
Distillation column, with rectification, electric resistance heating,
for the production of hydrated alcohol, ANP 94/96° GL, in stainless
steel 304, load capacity 180 liters, digital thermometer, safety
valve, inspection lid and control panel.
Tank for storing the alcohol, in polypropylene, thickness 3 mm.
Capacity 100 liters.
Electric panel for the control of the different modules.
PLC with HMI for the control of the parameters of the process.
 
For the quality control of the produced ethanol an alcoholmeter, a
Brix hydrometer and a thermometer are also included. For a complete
test of the components of the alcohol it is necessary to perform a
laboratory analysis.
Raw material
The plant produces alcohol 94/96% from sugar cane.
Information for the installation of the plant:
Electric supply: threephase voltage
Energy consumption approximately 5 kW (basic configuration)
Necessary space:
For the grinder: 3 m2
For the tanks: 30 m2
For the distiller: 3 to 5 m2
For the electrical panel: 0.5 m2
OPTIONS
On request, it is possible to provide the plant with all the tanks in
stainless steel.
On request, it is possible to produce alcohol with tubers (sweet
sorghum, manioc, potato, rice and corn) with additional grinders.
The yeasts for the fermentation can be provided by De Lorenzo.
The plant can be setup for the production in either continuous process
or discontinuous process, according to the needs of the customer.
DL GREENKIT
신재생 에너지 실습장비(태양광풍력연료전지)
SOLARWINDFUEL CELLS ENERGY TRAINER
신재생 에너지의 기본 개념 학습을 위한 장비: 태양광, 풍력, 수소 연료전지.
실습 내용:
*
연료 전지 조립
*
수소 발생 및 저장
*
솔라 패널의 특성 곡선 결정
*
수소/산소 또는 수소/공기 동작
*
전해조의 특성 곡선 결정
*
전해조 효율 결정
*
패러데이 법칙 학습
*
연료 전지 특성 곡선 결정
*
연료 전지 효율 결정
*
물의 분해 전압 결정
*
수소 모델 자동차 제작
*
메탄올 이용 전기 발생
*
DMFC의 특성 곡선 결정
*
솔라 모듈의 전압 전류 강도에 대한 솔라 모듈 표면 영향
*
솔라 패널 직렬 연결시 전압과 전류
*
솔라 패널의 병렬 연결시 전압과 전류
*
조명 세기의 기능으로 솔라 패널의 전압과 전류
*
솔라 패널의 특성 전류전압 곡선
*
풍력 에너지로부터 전기 에너지
*
바람 속도의 효과
*
다른 방향으로부터 바람
*
회전 블레이드 수의 영향
*
블레이드의 다른위치 영향
*
부하시 윈드 휠 관찰
*
풍력 발전기의 전류 전압 특성
*
수소 기술을 이용한 바람으로부터 전기 에너지 저장
*
신재생 에너지의 자체 공급 시스템 개념
기술 사양
Electrolyser cell 5:
5 cm³/min H2; 2,5 cm³/min O2; 1.16 W
RFC H2/O2/Air:
Electrolyser 모드: 5 cm³/min H2;2.5 cm³/min O2; 1.16 W
연료 전지 모드: H2/O2 모드: 300 mW
H2/air 모드: 100 mW
PEMFC 키트:
H2/O2 mode: 600 mW, H2/air mode: 200 mW
메탄올 연료 전지:
Power: 10 mW
가스 저장: 30 cm³ H2; 30 cm³ O2
솔라 모듈: 2.0 V / 600 mA
배터리 박스: 4.5 VDC / 0.8 A
전원 공급기: 1.2 A
부하 (fan): 10 mW
부하 (car): 150 mW
케이블 길이: 250 mm
풍력 발전기
(책상 팬 평균 성능)
Umax 6.0 V Imax 0.3 A
솔라 모듈: 2.0 V / 600 mA
디케이드 저항:
Max. capacity: 1.2 W
Ports: 2 mm
Weight: 190 g
H x W x D: 40 x 160 x 130 mm
멀티 미터:
포트: 2 mm 무게: 140 g
크기:H x W x D: 125 x 70 x 30 mm
2 운반 케이스: 140 x 450 x 380 mm.
무게: 4 kg. each
옵션:
2 할로겐 램프의 더블 스폿라이트
DL SUNWIND
모듈형 태양광/풍력 실습장비
SOLAR/WIND ENERGY MODULAR TRAINER
태양광 에너지 및 풍력 에너지 전기 설비의 이론교육과 실습을 위한 모듈형 실습장비
구성:
*
태양광 기울기 모듈, 85W, 12V, 온도 센서 및 태양 복사 측정 셀.
*
윈드 터빈
*
윈드 터빈 12 Vdc, 160 W
*
지지 프레임 1.5 m.
*
풍속계 및 풍향 센서.
*
모듈 세트:
*
배터리 제어 모듈, 12V, 32A.
*
부하 모듈 2 X 12V 램프, dichroic 35W, LED 3W, 독립 스위치.
*
부하 모듈 2 X 12V 전원 램프, dichroic 35W, LED 3W, 독립 스위치.
*
전자 조절 모듈, LCD 스크린
*
가감 조절기.
*
태양 방사선 측정 모듈 (W/m2), 솔라 패널 온도 (°C), 전류, 전압, 전력.
*
풍속 풍향 측정 모듈.
*
윈드 터빈의 실내 사용을 위한 전동기 키트.
*
DC/AC 변환 모듈, 정현파 출력 전원 전압. 평균 전력: 300 W.
연결 리드선 및 실습 매뉴얼.
옵션:
DL DAQRE데이터 취득 시스템
DL SUNWIND24V and DL SUNWIND12V
하이브리드 태양광/풍력 에너지 실습장비
Hybrid solar / Wind Energy trainer
특징
태양광 패널과 풍력 터빈 두개의 서브 시스템을 통해 전기 에너지 발생을 하나로구성하는 하이브리드 시스템.
두개의 인버터 중 하나는 마스터로, 두번째 인버터는 슬레이브로 작동 하여 두개의 출력 주파수를 동기화하여 단일 라인으로 동작.
구성:
24V version
12V version
PFS
태양광 모듈
경사각 조정 및 태양 복사 측정.
185W, 24V
85W, 12V
AEROGEN
400W 윈드 터빈,
풍속계 및 풍향 센서 장착, DC 전동기 포함.
DL 9012
배터리 충전용 전자 조절 모듈,LCD 디스플레이 시스템 상태 모니터 태양광 전압, 배터리 전압, 전류, AmpHour
충전 및 온도.
DL 9013M
DC/AC 컨버터 모듈, 정현파 출력 발생.
회로 차단기. 마스터로 동작.
1200W
2X12V 배터리
500W
1X12V 배터리
DL 9013S
DC/AC 컨버터(또는 인버터)모듈.
슬레이브로 동작.
같음
같음
DL 9044
부하 모듈 20 W, 12Vdc 할로겐 램프 및
3W, 12Vdc LED 램프.
4 개
2 개
DL 9017
부하 모듈 35W, 전원 할로겐 램프 및
3W, 전원 LED 램프.
DL 9018
가변 로그 조절기 모듈, 80Ω, 6A max.,
전압 전류 특성 곡선 검출.
DL 9021
솔라 파라미터 측정 모듈 : 전압 전류,
태양 방사선, 온도 전력.
DL 9022
윈드 파라미터 측정 모듈: 전압 전류,
풍속, 풍향, 전력.
DL SIMSUN
조명 램프 세트. DC 신호로 빛의 강도
원격제어 및 포텐시오미터 이용 제어.
2 개
1 개
DL 21001M
프레임.
연결 케이블 및 실습 매뉴얼.
DL EFFICIENCYA
전동기 에너지 효율 실습장비
ENERGY EFFICIENCY IN ELECTRIC MOTORS
전동기 제어시 에너지 효율을 학습
인버터 제어 모터 구동 펌프의 유압 회로에서 에너지 효율 실험
구성:
*
유압 회로 구성 실험 패널. 송수로를 간략하게 회로 시뮬레이트.
*
저장 탱크 물은 3개의 다른 직경 물 인입 세트와 전자 밸브에 의해 제어, 유압 회로를 통해 펌프되어 흐름.
*
제어 모듈: PLC, 인버터, 네트워크 분석기
기술 사양:
*
3상 전동기 구동 펌프, 0.37 kW, 플로우 율 40 l/min.
*
3개의 2way NC 전자 밸브, 직접 제어, 브라스 구조
*
플로우 율 트랜스듀서, 1 40 l/min.
*
압력 트랜스듀서, 0 10 bar, 출력 신호 범위 010 V
*
압력 스위치, 1 12 bar
*
PLC, 12 디지털 입력, 4 아날로그 입력, 6 릴레이 출력
*
인버터, 0.4 kW, PID 제어 모드, 7 사용자 구성 속도 설정
*
다기능 네트워크 분석기, 선간 전압 및 전류, 총 유효 및 무효 전력, 전력 인자,유효 및 무효 에너지 등.
DL 2130B
KEPPE MOTOR – HIGH EFFICIENCY UNIVERSAL AC/DC MOTOR
System for the study of a new motor technology based on Prof. Keppe’s
essential energy principles, set forth in his book “The New Physics
Derived From A Disinverted Metaphysics”.
The system allows performing tests on power and efficiency, compared
to traditional motors.
The theory
Prof. Keppe, in opposition to the current physics teaching that energy
derives from the matter, states that the matter is a byproduct of the
“essential universe energy” .
A natural transducer of such energy into one of secondary forms is
magnetism. Therefore, magnetic dipoles can be regarded as tiny
vortexes from which the “essential energy” flows in a double spiral
motion and transforms itself into bipolar magnetic forces of
attraction and repulsion. As a natural consequence of such physics
laws, matter is formed/agglutinated in space and time according to
this bipolar resonant simple patterns.
The motor’s principle
This new principle has given origin to the Keppe Motor, a resonant
magnetic motor driven by pulsed DC. The Keppe Motor includes one or
more permanent magnetic rotor discs to capture magnetism from the
environment and conelike coreless coils that simulate in large scale
the tiny natural vortexes of the magnetic dipoles.
Therefore, the Keppe Motor has a switching system that naturally
responds to the input power supply until resonance is achieved. A
natural consequence of the state of resonance between the magnetic
forces of the rotor and the stator coils is that the efficiency of the
motor is maximized.
The educational system
The DL 2130B has been designed for studying the efficiency of the
Keppe motor when used to drive a conventional AC fan.
The system is composed of:
*
A fan with a 127 Vac Keppe Motor (D85 mm); maximum working speed
of 1300 rpm loaded by a 50 cm diameter blade, consuming 40 W.
*
A fan with a 127 Vac conventional ac singlephase motor with the
same blade of 50 cm in diameter, consuming 140W at the maximum
working speed of 1300 rpm.
*
A panel with a 400 W, 12 Vdc/115 Vac inverter, several analog
meters, digital ac power meter and Keppe motor driver.
*
A transformer for a 12V battery
*
A 8W output Keppe Motor
*
A speed meter
Purpose of the system
To study alternatives for energy efficiency by comparing a
conventional motor against the new technology based on the Keppe Motor
working principle. Its design and construction allows measuring the
consumptions and comparing them with an equivalent fan driven by a
conventional motor, both set at the same mechanical output power.
Besides this, the system allows understanding the working principles
of MOSFET bridge commutations and measurement of inverter efficiency.
태양광 에너지 설치 키트
Solar Photovoltaic Energy installation kit DL SOLAR KIT
전기 에너지 발생 태양광 솔라 에너지 키트.
구성:
*
태양광 기울기 패널, 85W, 12V, 태양 복사 측정, 온도 센서.
*
프레임.
*
전자 전류 조절 모듈, LCD 스크린, 출력 12 V, 30 A.
*
인버터, 전원 출력, 12 V, 30 A, 300 W.
*
배터리 조절 스위치, 0600 V, 32A .
*
2개의 전원 전압 램프, dichroic 35W, LED 3W .
*
2개의 12V lamps, dichroic 20 W, LED 3W.
*
케이블, 콘넥터 및 액서서리.
*
램프, 스위치, 보호장치등 전기 구성품 장착 프레임.
연결 케이블 및 설치 매뉴얼.
DL DAQRE
데이터 취득 시스템
DATA ACQUISITION SYSTEM FOR RENEWABLE ENERGIES
구성:
*
데이터 취득 인터페이스
*
데이터 처리 소프트웨어
DL 1893 – 데이터 취득 유닛
• USB 전원 공급, < 100mA
• 2 릴레이 출력
• 2 아날로그 출력, 직렬 8 bit D/A 컨버터
출력: 10/+10 V
• 8 아날로그 입력, 12 bit A/D 컨버터
입력: 10/+10 V
변환 최대 속도: 10 kHz
DL RESW 소프트웨어
*
데이터 취득: V, I, 복사 솔라패널
V, I, 풍속 풍력 발전
*
LabView GUI 반자동 취득: 취득 제어, 데이터 취득 저장 & 처리 through 수학적 모델, 2D 그래프
출력. (IV, PIrr, Pwind speed), 데이터 전송
DL MK1
CATHODIC PROTECTION TRAINING BENCH
The Cathodic protection is a technique to control the corrosion of a
metal surface by making it work as a cathode of an electrochemical
cell. This is achieved by placing in contact with the metal to be
protected another more easily corroded metal to act as the anode of
the electrochemical cell. Cathodic protection systems are most
commonly used to protect steel, water or fuel pipelines and storage
tanks, steel pier piles, ships, offshore oil platforms and onshore oil
well casings.
INDEX OF THE DOCUMENT
1.ABSTRACT 2
2. LIST OF EXPERIMENTS 3
3. LIST OF MATERIALS 7
1.
ABSTRACT
The present specification deals with the description of a training
device on the introduction to the Cathodic Protection discipline.
The specification limits its view over the function of the training
bench, giving the primary list of the experiments with which the
student can try by himself to deepen practically into the phenomena of
the corrosion control of the metals in contact with the electrolyte.
The theoretical study that precedes the experiments to undertake over
the bench is reported into the modular manual book, essential part of
the bench. In this book it is easily explained the background and
moreover the target of the experiment.
The bench provides facilities to study the case of isolated systems,
as well as the case of systems where different metals are coupled
together. Particular attention is given to the presence or not of
several kinds of insulating materials over the surfaces of the
samples, in order to demonstrate the different behavior of the same
material when coated or bare.
The bench provides suitable devices to highlight the concept of the
free corrosion potential, measured with easy to use reference
electrodes and means suitable to build with a certain accuracy the
polarization curves.
Protective techniques are represented as per sacrificial anodes
systems of several type of metals as per impressed current Cathodic
Protection systems with the possibility to see which is the
explanation of the use of constant voltage, constant current and
constant potential feeders.
The bench is provided with measuring facilities characterized by
suitable sensitivity and accuracy, in order to introduce which must be
the basis of the laboratory tests to be executed, to recognize which
is the correct way in order to determine the behavior of a metal in
contact with the electrolyte in different conditions of temperature
(thermostatic bath) and in high oxygen concentration (air
insufflations pump).
A suitable multichannel interface can connect the bench to a PC in
order to record the experiment results and give the trace for further
studies.
2.
CATHODIC PROTECTION TRAINING BENCH LIST OF THE EXPERIMENTS
The following list reports the proposed experiments and it corresponds
to the manual structure. The manual is a document addressed to the
teacher in order to prepare the lesson and reports the bibliography
and links for further investigations on the matter.
1) The use of the voltmeter
The most important instrument in the field of the Cathodic Protection
is the Voltmeter; typically, the digital type is the most common.
Because of the great impedance, it allows the measurement of voltages
(the potentials) due to sources with very high internal impedance.
The measurements follow the introduction to the electrical
measurements and to the introduction to the Ohm’s law that regulates
the passage of the current into the first as well as into the second
species conductors (metals and electrolytes).
2) The measurement of the difference of potential of a sample into an
electrolyte
This experiment introduces to the subject of the Cathodic Protection.
The target of the discipline is to modify the potential (versus the
reference cell) of the structure to protect by slowing the natural
tendency of the metal to pass in solution.
This experiment emphasizes the electrochemical approach to the
corrosion phenomena.
3) The reference cell
This experiment puts in relation the practical use of the three types
of reference cells most common in the discipline that are the Cu/
CuSO4 reference cell, the Ag/AgCl reference cell and the Zinc
reference cell.
4) The Daniel Cell
In the Daniel cell, copper and zinc electrodes are immersed in a
solution of copper (II) sulphate and zinc sulphate respectively. At
the anode, zinc is oxidized per the following half reaction:

Zn(s) Zn2+(aq) + 2e
At the cathode, copper is reduced per the following reaction:
Cu2+(aq) + 2e Cu(s)
In the Daniel cell which, due to its simplicity, is often used for
demonstrations, electrons that are “pulled” from the zinc travel
through the wire, providing an electrical current that illuminates the
bulb. In such a cell, the sulphate ions play an important role. Having
a negative charge, these anions build up around the anode to maintain
a neutral charge.
Conversely, at the cathode the copper (II) cations accumulate to
maintain this neutral charge. These two processes cause copper solid
to accumulate at the cathode and the zinc electrode to "dissolve" into
the solution.
5) The first and second species conductors
By using a simple circuit it is possible show the equivalence between
the electrolytes and the common conductors as far the passage of the
electrical current concerns.
6) Introduction to the Cathodic Protection Criteria
By using the electrolytic cell of the bench it is possible reproduce
the application of the NACE criteria that confirm the status of
Cathodic Protection of a structure.
7) Introduction to the sacrificial anodes in Zn, Mg, and Al
By using the electrolytic cell of the bench it is possible reproduce
the application of the sacrificial anode to a steel structure and see
in the same time the comparison in between two specimen, one in
Cathodic Protection regimen, the other in free corrosion regimen.
8) Introduction to the Cathodic Protection Impressed Current System
By using the electrolytic cell of the bench it is possible reproduce
the application of the impressed current to a steel structure and see
at the same time the comparison between two specimens, one in Cathodic
Protection regimen, obtained by means of sacrificial anodes, the other
driven with the impressed current system.
9) The consumable impressed current anode (Fe)
By using the electrolytic cell of the bench it is possible to
reproduce the application of the impressed current to a steel
structure and see in time the effect of the consumption of the anode
due to its passage in solution.
10) The inert impressed anode (TiPt and MMO)
Not all the anodic materials pass in solution, two examples can be
seen by using the Titanium Platinized anode and the Metal Oxide
covered Titanium anode.
11) Resistance concept, circuit for the first and second species
conductors
By using the electrolytic cell of the bench it is possible to produce
the passage of current into the bath and in this way to demonstrate
the validity of the Ohm’s Law in the field of Cathodic Protection.
Ohm's law applies to electrical circuits; it states that the current
through a conductor between two points is directly proportional to the
potential difference (i.e. voltage drop or voltage across the two
points) and inversely proportional to the resistance between them.
The mathematical equation that describes this relationship is: I V/R
Where I is the current in amperes, V is the potential difference in
volts and R is a circuit parameter called the resistance (measured in
ohms, also equivalent to volts per ampere). The potential difference
is also known as the voltage drop, and it is sometimes denoted by U, E
or emf (electromotive force) instead of V.
12) Introduction to the specific resistance concept over three
different first species conductors (Fe; Cu; FeNi)
To drive the student to the concept of resistivity, an experiment can
be executed by using three geometrically identical samples of
different material in order to identify the concept of specific
resistance that “in fieri” is the resistivity or as inverse the
conductivity concept.
13) Introduction to the concept of interference due to the presence of
external electric fields on buried or submerged structures (Stray
Currents)
The experiment reproduces the effect of an external electric field on
a submerged structure with the result of the formation of separated
anodic and cathodic areas on the surface of the sample. It is the
introduction to the concept of interference due to the presence of an
external and interfering electric field on buried or submerged
structures (Stray Currents).
14) Air presence influence on resistivity (insufflate air effect)
This experiment explains and demonstrates the change of the
resistivity with the increase of the presence of air dissolved into
the electrolyte.
15) Current density introduction and Tafel Curves construction
The concept of current density is, like the difference of potential,
the main concept in the Cathodic Protection discipline and this
experiment allows understanding that with this concept it is possible
to predict the amount of current needed to obtain the Cathodic
Protection regimen over a known surface structure immersed in the
electrolyte.
By using the provided multi channel interface it is possible to record
the change of the current values in the time, then build the
polarization curves in a plot.
16) Temperature effect over the Current density (thermostatic cell)
This experiment explains and demonstrates the change of current
density as a function of the temperature and introduces the concept of
chemical activity.
17) Air presence influence over the Current density (insufflate air
effect)
This experiment explains and demonstrates the change of current
density as a function of the increasing of dissolved oxygen.
18) Coating and Current density
The use of coated samples allows demonstrating the effect of the
coatings over the submerged or buried structures and gives the
magnitude of the effect explaining that the synergy between the
Cathodic Protection and the Coating of the surfaces to be protected
reduces the current density with all the relevant advantages.
3.
LIST OF MATERIALS
The proposed bench can be supplied ready to be used and provided with
the hereinafter listed material.
*
Bench with wheels (1300 x 2000 x 800 mm.) with electrical console
to connect to the mains Vac supply and lockable shelves to contain
the hereinafter listed material. Provided with waterproof top
surface.
*
3 sets of safety glasses and glows.
*
Digital voltmeter.
*
PC interface for the measurement and record of 5 different
channels.
*
Digital voltmeter on console.
*
2 digital ammeters on console.
*
2 Cu/CuSO4 reference cells.
*
2 Ag/AgCl reference cells.
*
2 Zn reference cells.
*
10 copper electrodes, 30 x 140 mm., thickness 2 mm.
*
10 carbon steel electrodes (bare).
*
4 transparent basins to build the electrolytic test bath.
*
Simple circuit with sliding resistor and lamp provided with
buklets for the insertion into the electrical circuit of the
electrolytic cell.
*
20 Zinc electrodes 8 mm., length 140 mm.
*
20 Magnesium electrodes 25 mm., length 140 mm,
*
20 Aluminum electrodes 25 mm, length 140 mm,
*
4 DC feeders (each provided with constant voltage, constant
current, constant potential facilities). The relevant instruments
are on the front console of the bench.
*
4 TiPt anodes (net anode 50mm x 140mm)
*
4 MMO tubular anodes (25.4 x 140 mm)
*
Cu bar 1mm., length 1 m.
*
Fe bar 1mm., length 1 m.
*
FeNi bar 1mm., length 1 m.
*
Resistivity fluid cell.
*
Waterproof resistor with thermostatic device.
*
Air pump with relevant sprayer.
*
10 carbon steel electrodes (completely coated with epoxy compound)
*
10 carbon steel electrodes (partially coated with epoxy compound)
*
10 various reagents in plastic cans (0,25 kg/each) with technical
sheet as per the requirement of CE.
*
Set of spare fuses.
*
Set of ancillaries and connecting leads (20 pieces).
*
2 paper copies and 1 CD of the manual book for training of the
teacher in order to undertake the experiments.
DL MK2
SINGLE STATION CATHODIC PROTECTION TRAINING BENCH
representative picture
The Cathodic protection is a technique to control the corrosion of a
metal surface by making it work as a cathode of an electrochemical
cell. This is achieved by placing in contact with the metal to be
protected another more easily corroded metal to act as the anode of
the electrochemical cell. Cathodic protection systems are most
commonly used to protect steel, water or fuel pipelines and storage
tanks, steel pier piles, ships, offshore oil platforms and onshore oil
well casings.
The present specification deals with the description of a training
device for the introduction to the Cathodic Protection discipline.
The specification limits its view over the functions of the training
bench, giving the primary list of experiments with which the student
can try by himself to practically deepen into the phenomena of the
corrosion control of metals in contact with the electrolyte.
The theoretical study that precedes the experiments is reported in the
manual, essential part of the bench. In this book the background and
the scope of the experiment are easily explained.
The bench provides facilities to study the case of isolated systems,
as well as the case of systems where different metals are coupled
together. Particular attention is given to the presence or not of
several kinds of insulating materials over the surfaces of the
samples, in order to demonstrate the different behavior of the same
material when coated or bare.
The bench provides suitable devices to highlight the concept of the
free corrosion potential, measured with easy to use reference
electrodes and means suitable to build with a certain accuracy the
polarization curves.
Protective techniques are represented as per sacrificial anodes
systems of several type of metals as per impressed current Cathodic
Protection systems, with the possibility to see which is the
explanation of the use of constant voltage, constant current and
constant potential feeders.
The bench is provided with measuring facilities characterized by
suitable sensitivity and accuracy.
A suitable multichannel interface can connect the bench to a PC in
order to record the experiment results and give the trace for further
studies.
CATHODIC PROTECTION TRAINING BENCH LIST OF EXPERIMENTS
The following list reports the proposed experiments and it corresponds
to the manual structure. The manual is a document addressed to the
teacher in order to prepare the lesson and reports the bibliography
and links for further investigations on the matter.
The use of the voltmeter
The most important instrument in the field of the Cathodic Protection
is the Voltmeter; typically, the digital type is the most common.
Because of the great impedance, it allows the measurement of voltages
(the potentials) due to sources with very high internal impedance.
The measurements follow the introduction to the electrical
measurements and to the introduction to the Ohm’s law that regulates
the passage of the current into the first as well as into the second
species conductors (metals and electrolytes).
The measurement of the difference of potential of a sample into an
electrolyte
This experiment introduces to the subject of the Cathodic Protection.
The target of the discipline is to modify the potential (versus the
reference cell) of the structure to protect by slowing the natural
tendency of the metal to pass in solution.
This experiment emphasizes the electrochemical approach to the
corrosion phenomena.
The reference cell
This experiment puts in relation the practical use of the three most
common types of reference cells in the discipline, that are the Cu/
CuSO4 reference cell, the Ag/AgCl reference cell and the Zinc
reference cell.
The Daniel Cell
In the Daniel cell, copper and zinc electrodes are immersed in a
solution of copper (II) sulphate and zinc sulphate respectively. At
the anode, zinc is oxidized per the following half reaction: Zn(s)
Zn2+(aq) + 2e
At the cathode, copper is reduced per the following reaction: Cu2+(aq)
+ 2e Cu(s)
In the Daniel cell that, due to its simplicity, is often used for
demonstrations, electrons that are “pulled” from the zinc travel
through the wire, providing an electrical current that illuminates the
bulb. In such a cell, the sulphate ions play an important role. Having
a negative charge, these anions build up around the anode to maintain
a neutral charge.
Conversely, at the cathode the copper (II) cations accumulate to
maintain this neutral charge. These two processes cause copper solid
to accumulate at the cathode and the zinc electrode to "dissolve" into
the solution.
The first and second species conductors
By using a simple circuit it is possible show the equivalence between
the electrolytes and the common conductors as far the passage of the
electrical current concerns.
Introduction to the Cathodic Protection Criteria
By using the electrolytic cell of the bench it is possible reproduce
the application of the NACE criteria that confirm the status of
Cathodic Protection of a structure.
Introduction to the sacrificial anodes in Zn, Mg, and Al
By using the electrolytic cell of the bench it is possible reproduce
the application of the sacrificial anode to a steel structure and see
in the same time the comparison in between two specimen, one in
Cathodic Protection regimen, the other in free corrosion regimen.
Introduction to the Cathodic Protection Impressed Current System
By using the electrolytic cell of the bench it is possible reproduce
the application of the impressed current to a steel structure and see
at the same time the comparison between two specimens, one in Cathodic
Protection regimen, obtained by means of sacrificial anodes, the other
driven with the impressed current system.
The consumable impressed current anode (Fe)
By using the electrolytic cell of the bench it is possible to
reproduce the application of the impressed current to a steel
structure and see in time the effect of the consumption of the anode
due to its passage in solution.
The inert impressed anode (TiPt and MMO)
Not all the anodic materials pass in solution, two examples can be
seen by using the Titanium Platinized anode and the Metal Oxide
covered Titanium anode.
Resistance concept, circuit for the first and second species
conductors
By using the electrolytic cell of the bench it is possible to produce
the passage of current into the bath and in this way to demonstrate
the validity of the Ohm’s Law in the field of Cathodic Protection.
Ohm's law applies to electrical circuits; it states that the current
through a conductor between two points is directly proportional to the
potential difference (i.e. voltage drop or voltage across the two
points) and inversely proportional to the resistance between them. The
mathematical equation that describes this relationship is: I V/R
Where I is the current in amperes, V is the potential difference in
volts and R is a circuit parameter called the resistance (measured in
ohms, also equivalent to volts per ampere). The potential difference
is also known as the voltage drop, and it is sometimes denoted by U, E
or emf (electromotive force) instead of V.
Introduction to the specific resistance concept over three different
first species conductors (Fe; Cu; FeNi)
To drive the student to the concept of resistivity, an experiment can
be executed by using three geometrically identical samples of
different materials in order to identify the concept of specific
resistance, that is, the resistivity or as inverse the conductivity
concept.
Introduction to the concept of interference due to the presence of
external electric fields on buried or submerged structures (Stray
Currents)
The experiment reproduces the effect of an external electric field on
a submerged structure with the result of the formation of separated
anodic and cathodic areas on the surface of the sample. It is the
introduction to the concept of interference due to the presence of an
external and interfering electric field on buried or submerged
structures (Stray Currents).
Air presence influence on resistivity (insufflate air effect)
This experiment explains and demonstrates the change of the
resistivity with the increase of the presence of air dissolved into
the electrolyte.
Current density introduction and Tafel Curves construction
The concept of current density is, like the difference of potential,
the main concept in the Cathodic Protection discipline and this
experiment allows understanding that with this concept it is possible
to predict the amount of current needed to obtain the Cathodic
Protection regimen over a known surface structure immersed in the
electrolyte.
By using the provided interface it is possible to record the change of
the current values in time, then build the polarization curves in a
plot.
Temperature effect over the Current density (thermostatic cell)
This experiment explains and demonstrates the change of current
density as a function of the temperature and introduces the concept of
chemical activity.
Air presence influence over the Current density (insufflate air
effect)
This experiment explains and demonstrates the change of current
density as a function of the increasing of dissolved oxygen.
Coating and Current density
The use of coated samples allows demonstrating the effect of the
coatings over the submerged or buried structures and gives the
magnitude of the effect explaining that the synergy between the
Cathodic Protection and the Coating of the surfaces to be protected
reduces the current density with all the relevant advantages.
LIST OF MATERIALS
The proposed bench can be supplied ready to be used and provided with
the hereinafter listed material: bench with wheels (1200 x 1000 x 800
mm. approx.) with electrical console to connect to the mains Vac
supply and lockable shelves to contain the material for the
experiments and provided with waterproof top surface, safety glasses
and glows, digital voltmeter, PC interface for the measurement and
storage of data, digital voltmeter on console, digital ammeter on
console, Cu/CuSO4 reference cell, Ag/AgCl reference cell, Zn reference
cell, copper electrode, carbon steel electrode, transparent basin to
build the electrolytic test bath, simple circuit with sliding resistor
and lamp suitable for the insertion into the electrical circuit of the
electrolytic cell, Zinc electrode, Magnesium electrode, Aluminum
electrode, DC feeder (provided with constant voltage, constant
current, constant potential facilities), TiPt anode, MMO tubular
anode, Cu bar, Fe bar, FeNi bar, resistivity fluid cell, waterproof
resistor with thermostatic device, air pump with relevant sprayer,
carbon steel electrode (completely coated with epoxy compound), carbon
steel electrode (partially coated with epoxy compound), various
reagents in plastic cans with technical sheet as per the requirement
of CE, set of spare fuses, set of ancillaries and connecting leads,
paper copies and CD of the manual book for training of the teacher in
order to undertake the experiments.
NOTE:
The DL MK2 version of the Cathodic Protection trainer differs from the
DL MK1 version on the possibility of performing simultaneously the
same experiment with different values of the parameters. In the DL MK2
version, the experiments can be performed in sequential mode, that is,
if you want to change the value of a specific parameter, you can do it
after performing the same experiment with the previous value. You must
then record the results on your notebook and then compare the
different results. With the DL MK1 version you can perform the same
experiment with two different parameter configurations at the same
time.


More Files

Showing 20 files
Icon
CHILD SUPPORT PAYMENT OPTIONS HTTPSTEXASATTORNEYGENERALGOVCSPAYMENTOPTIONS 1 PAY BY MAIL
child support payment options https://texasattorneygeneral.gov/cs/paymentoptions 1. pay by mail if your payments have been ordered t
Icon
39363 KNOWLEDGE ECONOMY FORUM II IMPLEMENTING KNOWLEDGE ECONOMY STRATEGIES
39363 knowledge economy forum ii implementing knowledge economy strategies innovation, lifelong learning, partnerships, netw
Icon
CCA HIGH PERFORMANCE PHYSICAL TRAINING PROGRAM FOR CURLING DEVELOPED
cca high performance physical training program for curling developed by bob comartin bhk (kin), cscs, strength & conditioning specialist for
Icon
3 FRANÇAIS ONTARIO REGULATION 32817 MADE UNDER THE NUTRIENT
3 français ontario regulation 328/17 made under the nutrient management act, 2002 made: july 26, 2017 filed: august 11, 201
Icon
DIRECTORY OF PPHSN RESOURCES – 2009 EDITION RÉPERTOIRE DES
directory of pphsn resources – 2009 edition répertoire des ressources du rossp – édition 2009 pphsn national/territorial epinet
Icon
GAMING EQUIPMENT — TOKENS — REQUIREMENTS COMPLIANCE WITH THIS
gaming equipment — tokens — requirements compliance with this standard does not, of itself confer immunity from legal obligations a ug
Icon
REVIEW OF POLLING DISTRICTS POLLING PLACES AND POLLING STATIONS
review of polling districts, polling places and polling stations proposals proposed polling district and polling station no.
Icon
FLOOD RISK 21 PUBLIC PERCEPTIONS OF LOCAL FLOOD RISK
flood risk 21 public perceptions of local flood risk and the role of climate change manuscript accepted for publication by environment, sy
Icon
IZJAVA ZA DOKAZOVANJE UPRAVIČENOSTI GIBANJA IZVEN STATISTIČNE REGIJE PREBIVALIŠČA
izjava za dokazovanje upravičenosti gibanja izven statistične regije prebivališča statement demonstrating entitlement to movement outside th
Icon
SAN DIEGO COUNTY OFFICE OF EDUCATION PAGE 7 YEAR
san diego county office of education page 7 year: 2013 2014 regional occupational program date printed: 9/26/2012 course outline/competenc
Icon
HOST DEFENSE AGAINST BACTERIAL TOXINS MECHANISMS AND THERAPIES POREFORMING
host defense against bacterial toxins: mechanisms and therapies poreforming toxins are the largest single class of proteinaceous bacterial
Icon
CURRICULUM VITAE LANNA CHEUCK BUSINESS ADDRESS MONTEFIORE MEDICAL CENTER
curriculum vitae lanna cheuck business address: montefiore medical center 1250 waters place 9th floor bronx, ny 10462
Icon
WHAT QUESTIONS ENGAGE PARTICIPANTS? WHATS IN A QUESTION
what questions engage participants? whats in a question, you ask? everything. it is a way of evoking
Icon
ROOM DOCUMENT 8  MEETING OF THE HIGH
room document 8  meeting of the high level group on statistics paris 13 ju
Icon
FROM PRINT TO ELECTRONIC LIBRARIES – THE INFORMATION SOCIETY
from print to electronic libraries – the information society in action poster from fao: david lubin memorial library name and co
Icon
COMPOSITES ISSUES TO ADDRESS WHAT ARE
composites issues to address: * what are the classes and types of composites?
Icon
PURSUANT OF ARTICLES 106 AND 133 OF THE FINANCIAL
pursuant of articles 106 and 133 of the financial instruments act (official gazette of the republic of slovenia, no. 673699/2007), the stock
Icon
04 – NORWEGIAN OIL AND GAS RECOMMENDED MODEL AGREEMENTS
04 – norwegian oil and gas recommended model agreements for use of pipeline to pipeline, tiein, crossing, proximity, confidentiality
Icon
EL CAMINO COLLEGE N67 – LEGAL AND ETHICAL CONSIDERATIONS
el camino college n67 – legal and ethical considerations in nursing learning activities: legal and ethical considerations i
Icon
IT CAN BE DONE! SAMPLE RETENTION METHODS USED FOR
it can be done! sample retention methods used for the longitudinal study of adult learning clare strawn